Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

A Study of Applying Data Mining Technologies for Deriving Flood-Control Release Rules on a Reservoir Operation System

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
A Study of Applying Data Mining Technologies for Deriving Flood-Control Release Rules on a Reservoir Operation System
Code/計畫編號
NSC97-2218-E464-001
Translated Name/計畫中文名
應用資料探勘分類技術於水庫最佳防洪放水規則之研究
 
Project Coordinator/計畫主持人
Chih-Chiang Wei
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
徐年盛
 
Department/Unit
Department of Marine Environmental Informatics
Website
https://www.grb.gov.tw/search/planDetail?id=1630827
Year
2008
 
Start date/計畫起
01-01-2008
Expected Completion/計畫迄
01-10-2008
 
Bugetid/研究經費
305千元
 
ResearchField/研究領域
土木水利工程
 

Description

Abstract
本計畫擬以一年為研究期限,制定一方法流程以決定水庫最佳防洪放水規 則,以供水庫操作人員在颱洪期間據以決定一最佳即時放水量。本計畫將以兩新 近資料探勘分類技術進行防洪放水規則之探討,此兩分類技術包括決策樹演算法 與類神經決策樹演算法。本計畫所建立之方法流程包括資料收集、水庫防洪放水 優選模式建立、水庫防洪操作規則建立(決策樹型規則)、水庫最佳防洪操作規 則探討等四大工作項目。其中,本計畫所建立之水庫防洪放水優選模式將可產生 兩決策樹演算模式所需輸入之最佳解資料。 本計畫所制定之方法流程將應用於大漢溪流域石門水庫系統。本計畫所建立 之石門水庫最佳防洪放水規則將包括洪峰發生前和洪峰發生後兩階段之放水規 則。本計畫所建立之水庫防洪最佳放水操作規則將可提供水庫操作人員在颱洪期 間決定一水庫最佳即時放水量,以減輕河川下游沿岸居民洪水災害威脅及降低生 命財產損失。 We are proposing a one-year project. To provide the optimal real-time releases for operators on a multi-reservoir system during typhoon, we propose the methodology to extract a set of optimal multi-reservoir operation rules for flood control. The two newly data mining technologies, namely decision-tree algorithm (C5.0) and neural-based decision-tree algorithm (NDT) are employed in the extracting rules. The tasks to be carried out can be grouped into the following four general categories: (1) collection of data, (2) development of the model of optimal flood control operation and solution of optimal release patterns, (3) building of the model of the decision-tree algorithm and neural-based decision-tree algorithm and extraction of the decision trees, and (4) comparison of the developed rules and the current rules. The developed methodology will be applied to establish the optimal flood-control operation rules for the Shihmen reservoir in the Tahan river basin. The optimal flood-control operation rules involve rules with respect to peak-flow-preceding stage and peak-flow-proceeding stage. The results obtained from the operation rules will provide the optimal real-time reservoir releases during flood periods. Moreover, using the results obtained from the proposed project can be used to reduce the chance of flood damage during a flood in the area of downstream river.
 
Keyword(s)
防洪規則
決策樹
類神經網路
資料探勘
優選模式
水庫放水
operating rules for flood control
decision tree
neural network
datamining
optimization model
reservoir release
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋