Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Characteristics of Sar Radar Image for Landslide Area and Its Application to Rapid Landslide Detection(I)

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Characteristics of Sar Radar Image for Landslide Area and Its Application to Rapid Landslide Detection(I)
Code/計畫編號
MOST109-2625-M019-009
Translated Name/計畫中文名
多元尺度調查方法於道路岩坡破壞特性、監測及整治技術機制評估之研究-SAR影像訊號於崩塌地特性分析及其應用於災後快速偵測崩塌地(子計畫九)(I)
 
Project Coordinator/計畫主持人
Yuan-Fong Su
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
National Science and Technology Center for Disaster Reduction
Website
https://www.grb.gov.tw/search/planDetail?id=13524435
Year
2020
 
Start date/計畫起
01-08-2020
Expected Completion/計畫迄
31-07-2021
 
Bugetid/研究經費
456千元
 
ResearchField/研究領域
防災工程
 

Description

Abstract
本計畫依據坡地災害領域(學門代碼:M1720)研究課題2-1「坡地災害風險管理系統建立暨案例探討」之研究內容1「大量坡地災害(含目錄、潛勢、監測、災損等)收集、補充建置,資訊系統建立、及綜合分析」研提計畫書。臺灣經常面臨颱風與豪雨所帶來的坡地災害威脅,而過去欲了解全台灣於暴雨過後的全面性新增崩塌地分布,必須仰賴福衛2號或5號等光學資源衛星,而使用光學影像監測災後的坡地災害時,經常受限於雲遮的影響,欲取得全台災後崩塌地的完整分布資訊,通常需花費1至2個月。然而,SAR影像具有可穿透雲層的特性,同時由於歐盟太空中心穩定的提供每6天一幅的Sentinel-1A 或1B雷達影像,不受雲層的干擾,可規律且全面性的取得地表的資訊。對於風災後,期望在一周內可以掃描台灣地區,偵測出崩塌地的分布,有相當大的應用潛力。本研究將仔細檢視崩塌地/裸露地、林地與水體的雷達回波強度資料特性,建立適當之變遷偵測的演算法,該演算法將透過Google Earth Engine(GEE)的強大運算與展示效能,製作一網路應用程式(web application),並發布於網頁供民眾使用,可於災後快速得到全台的新增崩塌地分布位置。本研究也將是國內第一個使用GEE開發坡地災後崩塌地監測的網路應用程式的計畫。 Landslide monitoring after typhoon or heavy rainfall events of whole Taiwan relies on optical satellite imagery in the past. However, optical satellite imagery for landslide monitoring after heavy rainfall event is largely hampered by cloud. Thus, it generally takes 1 to 2 months to create a landslide inventory after a typhoon or heavy rainfall event. In this study, we aim to take advantage of Synthetic Aperture Radar (SAR) imagery which could minimize the impact of cloud for landslide monitoring after a typhoon or heavy rainfall event. Thanks to the open data policy of European Space Agency (ESA), we could have a Sentinel-1A or 1B image every 6 days regularly. In this study, our goals are two-fold. First is to evaluate the backscattering coefficient of landslide area carefully. Second goal is to develop a change detection algorithm and create a Google Earth Engine (GEE) web application using the developed algorithm to provide an easy-assess webpage for end-users. The results of this project is going to be the first application of GEE for landslide change detection monitoring.
 
Keyword(s)
SAR
Google Earth Engine
崩塌地
SAR
Google Earth Engine
landslide
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋