Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1074
Title: Applications of the dual integral formulation in conjunction with fast multipole method to the oblique incident wave problem
Authors: Chen, K. H.
Jeng-Tzong Chen 
Kao, J. H.
Ying-Te Lee 
Keywords: fast multipole method;oblique incident wave;thin barrier;modified Helmholtz equation;dual boundary element method;hypersingular equation;divergent series
Issue Date: 20-Aug-2008
Publisher: Wiley-Blackwell
Journal Volume: 59
Journal Issue: 7
Start page/Pages: 711-751
Source: International Journal for Numerical Methods in Fluids 
Abstract: 
In this paper, the dual integral formulation is derived for the modified Helmholtz equation in the propagation of oblique incident wave passing a thin barrier (zero thickness) by employing the concept of fast multipole method (FMM) to accelerate the construction of an influence matrix. By adopting the addition theorem, the four kernels in the dual formulation are expanded into degenerate kernels that separate the field point and the source point. The source point matrices decomposed in the four influence matrices are similar to each other or only to some combinations. There are many zeros or the same influence coefficients in the field point matrices decomposed in the four influence matrices, which can avoid calculating the same terms repeatedly. The separable technique reduces the number of floating‐point operations from O((N)2) to O(N loga(N)), where N is the number of elements and a is a small constant independent of N. Finally, the FMM is shown to reduce the CPU time and memory requirement, thus enabling us to apply boundary element method (BEM) to solve water scattering problems efficiently. Two‐moment FMM formulation was found to be sufficient for convergence in the singular equation. The results are compared well with those of conventional BEM and analytical solutions and show the accuracy and efficiency of the FMM.
URI: http://scholars.ntou.edu.tw/handle/123456789/1074
ISSN: 1097-0363
DOI: 10.1002/fld.1809
Appears in Collections:河海工程學系

Show full item record

Page view(s)

190
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback