Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/10913
DC FieldValueLanguage
dc.contributor.authorChih-Chiang Weien_US
dc.date.accessioned2020-11-21T06:54:20Z-
dc.date.available2020-11-21T06:54:20Z-
dc.date.issued2014-06-
dc.identifier.issn2169-897X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/10913-
dc.description.abstractIn this study, a practical typhoon effective rainfall nowcasting (TERN) model was developed for use in real-time forecasting. The TERN model was derived from a data-driven adaptive network-based fuzzy inference system (ANFIS). The model inputs include meteorological data and radar reflectivity data. The model simulation process begins with an online typhoon warning issued by the Central Weather Bureau (CWB) of Taiwan. It is then determined whether the typhoon approaches the study area according to the typhoon track predicted by the CWB. When a typhoon hits Taiwan, various data are received from sensor instruments, including the ground precipitation data, typhoon climatological data, and radar reflectivity factor by using Weather Surveillance Radar, 1988, Doppler (WSR-88D) products. The study site was Shihmen Catchment. A maximum of 10 typhoon events from 2000–2010 were collected. Regarding the model construction, the input combinations of the ground precipitations and reflectivity factors over the catchment functioned as optimal input variables. To verify the practicability of the ANFIS-based TERN model, Typhoon Krosa, which hit Taiwan in 2007, was simulated. The results demonstrated that the proposed methodology of real-time rainfall forecasts during typhoon warning periods yielded favorable performance levels, reliably predicting results regarding 1-h to 6-h forecasting horizons.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Geophysical Research-Atmospheresen_US
dc.titleSimulation of operational typhoon rainfall nowcasting using radar reflectivity combined with meteorological dataen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/2014jd021488-
dc.identifier.doi<Go to ISI>://WOS:000337974500020-
dc.identifier.doi<Go to ISI>://WOS:000337974500020-
dc.identifier.url<Go to ISI>://WOS:000337974500020
dc.relation.journalvolume119en_US
dc.relation.journalissue11en_US
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋環境資訊系
Show simple item record

Page view(s)

92
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback