Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/10923
DC FieldValueLanguage
dc.contributor.authorChih-Chiang Weien_US
dc.date.accessioned2020-11-21T06:54:21Z-
dc.date.available2020-11-21T06:54:21Z-
dc.date.issued2020-07-
dc.identifier.issn1687-9309-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/10923-
dc.description.abstractTaiwan, being located on a path in the west Pacific Ocean where typhoons often strike, is often affected by typhoons. The accompanying strong winds and torrential rains make typhoons particularly damaging in Taiwan. Therefore, we aimed to establish an accurate wind speed prediction model for future typhoons, allowing for better preparation to mitigate a typhoon’s toll on life and property. For more accurate wind speed predictions during a typhoon episode, we used cutting-edge machine learning techniques to construct a wind speed prediction model. To ensure model accuracy, we used, as variable input, simulated values from the Weather Research and Forecasting model of the numerical weather prediction system in addition to adopting deeper neural networks that can deepen neural network structures in the construction of estimation models. Our deeper neural networks comprise multilayer perceptron (MLP), deep recurrent neural networks (DRNNs), and stacked long short-term memory (LSTM). These three model-structure types differ by their memory capacity: MLPs are model networks with no memory capacity, whereas DRNNs and stacked LSTM are model networks with memory capacity. A model structure with memory capacity can analyze time-series data and continue memorizing and learning along the time axis. The study area is northeastern Taiwan. Results showed that MLP, DRNN, and stacked LSTM prediction error rates increased with prediction time (1–6 hours). Comparing the three models revealed that model networks with memory capacity (DRNN and stacked LSTM) were more accurate than those without memory capacity. A further comparison of model networks with memory capacity revealed that stacked LSTM yielded slightly more accurate results than did DRNN. Additionally, we determined that in the construction of the wind speed prediction model, the use of numerically simulated values reduced the error rate approximately by 30%. These results indicate that the inclusion of numerically simulated values in wind speed prediction models enhanced their prediction accuracy.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvances in Meteorologyen_US
dc.titleDevelopment of Stacked Long Short-Term Memory Neural Networks with Numerical Solutions for Wind Velocity Predictionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1155/2020/5462040-
dc.identifier.doi<Go to ISI>://WOS:000559034300001-
dc.identifier.doi<Go to ISI>://WOS:000559034300001-
dc.identifier.url<Go to ISI>://WOS:000559034300001-
dc.relation.journalvolume2020en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋環境資訊系
Show simple item record

Page view(s)

97
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback