Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/10925
DC 欄位值語言
dc.contributor.authorWei, Chih-Chiangen_US
dc.contributor.authorCheng, Ju-Yuehen_US
dc.date.accessioned2020-11-21T06:54:21Z-
dc.date.available2020-11-21T06:54:21Z-
dc.date.issued2020-03-
dc.identifier.issn1464-7141-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/10925-
dc.description.abstractBecause Taiwan is located within the subtropical high and on the primary path of western Pacific typhoons, the interaction of these two factors easily causes extreme climate conditions, with strong wind carrying heavy rain and huge wind waves. To obtain precise wind-wave data for weather forecasting and thus minimize the threat posed by wind waves, this study proposes a two-step wind-wave prediction (TSWP) model to predict wind speed and wave height. The TSWP model is further divided into TSWP1, which uses data attributes at the current moment as input values and TSWP2, which uses observations from a lead time and predicts data attributes from input data. The classical one-step wave height prediction (OSWP) approach, which directly predicts wave height, was used as a benchmark to test TSWP. Deep recurrent neural networks (DRNNs) can be used to construct TSWP and OSWP approach-based models in wave height predictions. To compare with the accuracy achieved using DRNNs, linear regression, multilayer perceptron (MLP) networks, and deep neural networks (DNNs) were tested as benchmarks. The Guishandao Buoy Station located off the northeastern shore of Taiwan was used for a case study. The results were as follows: (1) compared with the shallower MLP network, the DNN and DRNN demonstrated a lower prediction error. (2) Compared with OSWP, TSWP1 and TSWP2 provided more accurate results. Therefore, the TSWP approach using a DRNN algorithm can effectively predict wind-wave heights.en_US
dc.language.isoen_USen_US
dc.publisherIWA PUBLISHINGen_US
dc.relation.ispartofJ HYDROINFORMen_US
dc.subjectFUZZY INFERENCE SYSTEMen_US
dc.subjectOCEAN WAVESen_US
dc.subjectNUMERICAL SIMULATIONSen_US
dc.subjectHEIGHTen_US
dc.subjectMODELen_US
dc.subjectPARAMETERSen_US
dc.subjectALGORITHMen_US
dc.subjectSPEEDen_US
dc.subjectOPTIMIZATIONen_US
dc.titleNearshore two-step typhoon wind-wave prediction using deep recurrent neural networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.2166/hydro.2019.084-
dc.identifier.isiWOS:000526581100008-
dc.identifier.url<Go to ISI>://WOS:000526581100008
dc.relation.journalvolume22en_US
dc.relation.journalissue2en_US
dc.relation.pages346-367en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:13 CLIMATE ACTION
海洋環境資訊系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

10
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

122
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋