Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/10928
DC 欄位值語言
dc.contributor.authorWei, Chih-Chiangen_US
dc.contributor.authorHsieh, Po-Yuen_US
dc.date.accessioned2020-11-21T06:54:22Z-
dc.date.available2020-11-21T06:54:22Z-
dc.date.issued2020-03-
dc.identifier.issn2072-4292-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/10928-
dc.description.abstractTaiwan is located at the junction of the tropical and subtropical climate zones adjacent to the Eurasian continent and Pacific Ocean. The island frequently experiences typhoons that engender severe natural disasters and damage. Therefore, efficiently estimating typhoon rainfall in Taiwan is essential. This study examined the efficacy of typhoon rainfall estimation. Radar images released by the Central Weather Bureau were used to estimate instantaneous rainfall. Additionally, two proposed neural network-based architectures, namely a radar mosaic-based convolutional neural network (RMCNN) and a radar mosaic-based multilayer perceptron (RMMLP), were used to estimate typhoon rainfall, and the commonly applied Marshall-Palmer Z-R relationship (Z-R_MP) and a reformulated Z-R relationship at each site (Z-R_station) were adopted to construct benchmark models. Monitoring stations in Hualien, Sun Moon Lake, and Taichung were selected as the experimental stations in Eastern, Central, and Western Taiwan, respectively. This study compared the performance of the models in predicting rainfall at the three stations, and the results are outlined as follows: at the Hualien station, the estimations of the RMCNN, RMMLP, Z-R_MP, and Z-R_station models were mostly identical to the observed rainfall, and all models estimated an increase during peak rainfall on the hyetographs, but the peak values were underestimated. At the Sun Moon Lake and Taichung stations, however, the estimations of the four models were considerably inconsistent in terms of overall rainfall rates, peak rainfall, and peak rainfall arrival times on the hyetographs. The relative root mean squared error for overall rainfall rates of all stations was smallest when computed using RMCNN (0.713), followed by those computed using RMMLP (0.848), Z-R_MP (1.030), and Z-R_station (1.392). Moreover, RMCNN yielded the smallest relative error for peak rainfall (0.316), followed by RMMLP (0.379), Z-R_MP (0.402), and Z-R_station (0.688). RMCNN computed the smallest relative error for the peak rainfall arrival time (1.507 h), followed by RMMLP (2.673 h), Z-R_MP (2.917 h), and Z-R_station (3.250 h). The results revealed that the RMCNN model in combination with radar images could efficiently estimate typhoon rainfall.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofREMOTE SENS-BASELen_US
dc.subjectPREDICTION SYSTEMen_US
dc.subjectMOUNTAIN-RANGEen_US
dc.subjectSURFACE WINDen_US
dc.subjectPRECIPITATIONen_US
dc.subjectTAIWANen_US
dc.subjectCALIBRATIONen_US
dc.subjectSIMULATIONen_US
dc.titleEstimation of Hourly Rainfall during Typhoons Using Radar Mosaic-Based Convolutional Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/rs12050896-
dc.identifier.isiWOS:000531559300151-
dc.identifier.url<Go to ISI>://WOS:000531559300151
dc.relation.journalvolume12en_US
dc.relation.journalissue5en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:13 CLIMATE ACTION
海洋環境資訊系
15 LIFE ON LAND
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

13
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

139
上周
0
上個月
4
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋