Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1167
DC 欄位值語言
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorHong-Huei Lien_US
dc.contributor.authorChuan-Yen Hsuen_US
dc.contributor.authorChun-Hung Linen_US
dc.date.accessioned2020-11-16T09:46:42Z-
dc.date.available2020-11-16T09:46:42Z-
dc.date.issued2014-10-
dc.identifier.issn0377-0427-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1167-
dc.description.abstractIn this paper, the two-dimensional inverse Stokes problems, governed by bi-harmonic equations, are stably solved by the modified collocation Trefftz method (MCTM). In some practical applications of the Stokes problems, part of the boundary conditions cannot be measured in advance, so the mathematical descriptions of such problems are known as the inverse Stokes problems. When numerical simulation is adopted for solutions of the inverse Stokes problems, the solutions will become extremely unstable, which means that small perturbations in the boundary conditions will result in large errors of the final results. Hence, we adopted the MCTM for stably and efficiently analyzing the inverse Stokes problems. The MCTM is one kind of boundary-type meshless methods, so the mesh generation and the numerical quadrature can be avoided. Besides, the numerical solution is expressed as a linear combination of T-complete functions modified by a characteristic length. By enforcing the satisfactions of the boundary conditions at every boundary node, a system of linear algebraic equations will be yielded. The unknown coefficients in the solution expression can be acquired by directly inverting the coefficient matrix. The numerical solutions and their derivatives can be easily obtained by linear summation. Three numerical examples are provided to demonstrate the accuracy and the stability of the proposed meshless scheme for solving the two-dimensional inverse Stokes problems.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.subjectBi-harmonic equationen_US
dc.subjectInverse Stokes problemen_US
dc.subjectModified collocation Trefftz methoden_US
dc.subjectCharacteristic lengthen_US
dc.subjectMeshless methoden_US
dc.titleSolving inverse Stokes problems by modified collocation Trefftz methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.cam.2014.02.029-
dc.identifier.isiWOS:000335636300006-
dc.relation.journalvolume268en_US
dc.relation.pages68-81en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

7
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

128
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋