Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1167
標題: Solving inverse Stokes problems by modified collocation Trefftz method
作者: Chia-Ming Fan 
Hong-Huei Li
Chuan-Yen Hsu
Chun-Hung Lin
關鍵字: Bi-harmonic equation;Inverse Stokes problem;Modified collocation Trefftz method;Characteristic length;Meshless method
公開日期: 十月-2014
卷: 268
起(迄)頁: 68-81
來源出版物: Journal of Computational and Applied Mathematics
摘要: 
In this paper, the two-dimensional inverse Stokes problems, governed by bi-harmonic equations, are stably solved by the modified collocation Trefftz method (MCTM). In some practical applications of the Stokes problems, part of the boundary conditions cannot be measured in advance, so the mathematical descriptions of such problems are known as the inverse Stokes problems. When numerical simulation is adopted for solutions of the inverse Stokes problems, the solutions will become extremely unstable, which means that small perturbations in the boundary conditions will result in large errors of the final results. Hence, we adopted the MCTM for stably and efficiently analyzing the inverse Stokes problems. The MCTM is one kind of boundary-type meshless methods, so the mesh generation and the numerical quadrature can be avoided. Besides, the numerical solution is expressed as a linear combination of T-complete functions modified by a characteristic length. By enforcing the satisfactions of the boundary conditions at every boundary node, a system of linear algebraic equations will be yielded. The unknown coefficients in the solution expression can be acquired by directly inverting the coefficient matrix. The numerical solutions and their derivatives can be easily obtained by linear summation. Three numerical examples are provided to demonstrate the accuracy and the stability of the proposed meshless scheme for solving the two-dimensional inverse Stokes problems.
URI: http://scholars.ntou.edu.tw/handle/123456789/1167
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.02.029
顯示於:河海工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

7
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

128
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋