Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 商船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/11921
DC FieldValueLanguage
dc.contributor.authorJuan-Chen Huangen_US
dc.contributor.authorXu, Kunen_US
dc.contributor.authorYu, Pubingen_US
dc.date.accessioned2020-11-23T10:37:37Z-
dc.date.available2020-11-23T10:37:37Z-
dc.date.issued2013-11-
dc.identifier.issn1815-2406-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/11921-
dc.description.abstractDue to the rapid advances inmicro-electro-mechanical systems (MEMS), the study of microflows becomes increasingly important. Currently, the molecular-based simulation techniques are the most reliable methods for rarefied flow computation, even though these methods face statistical scattering problem in the low speed limit. With discretized particle velocity space, a unified gas-kinetic scheme (UGKS) for entire Knudsen number flow has been constructed recently for flow computation. Contrary to the particle-based direct simulation Monte Carlo (DSMC) method, the unified scheme is a partial differential equation-based modeling method, where the statistical noise is totally removed. But, the common point between the DSMC and UGKS is that both methods are constructed through direct modeling in the discretized space. Due to the multiscale modeling in the unified method, i.e., the update of both macroscopic flow variables and microscopic gas distribution function, the conventional constraint of time step being less than the particle collision time in many direct Boltzmann solvers is released here. The numerical tests show that the unified scheme is more efficient than the particle-based methods in the low speed rarefied flow computation. The main purpose of the current study is to validate the accuracy of the unified scheme in the capturing of non-equilibrium flow phenomena. In the continuum and free molecular limits, the gas distribution function used in the unified scheme for the flux evaluation at a cell interface goes to the corresponding Navier-Stokes and free molecular solutions. In the transition regime, the DSMC solution will be used for the validation of UGKS results. This study shows that the unified scheme is indeed a reliable and accurate flow solver for low speed non-equilibrium flows. It not only recovers the DSMC results whenever available, but also provides high resolution results in cases where the DSMC can hardly afford the computational cost. In thermal creep flow simulation, surprising solution, such as the gas flowing from hot to cold regions along the wall surface, is observed for the first time by the unified scheme, which is confirmed later through intensive DSMC computation.en_US
dc.language.isoenen_US
dc.relation.ispartofCommunications in Computational Physicsen_US
dc.subjectUnified schemeen_US
dc.subjectnon-equilibrium microflowen_US
dc.subjectthermal creep flowsen_US
dc.titleA Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows III: Microflow Simulationsen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000322072000001-
dc.identifier.doi10.4208/cicp.190912.080213a-
dc.identifier.url<Go to ISI>://WOS:000322072000001-
dc.relation.journalvolume14en_US
dc.relation.journalissue5en_US
dc.identifier.eissn1991-7120en_US
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Merchant Marine-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDivision of Ship-Handling Simulation-
crisitem.author.deptMaritime Development and Training Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgMaritime Development and Training Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:商船學系
Show simple item record

Page view(s)

171
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback