Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 商船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/11929
Title: Unsteady relativistic shock-wave diffraction by cylinders and spheres
Authors: Tsai, I-Nan
Juan-Chen Huang 
Tsai, Shang-Shi
Yang, J. Y.
Keywords: KINETIC BEAM SCHEME;GAS-DYNAMICS;HYDRODYNAMICS;EQUATIONS
Issue Date: Feb-2012
Journal Volume: 85
Journal Issue: 2
Source: Physical Review E
Abstract: 
The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.
URI: http://scholars.ntou.edu.tw/handle/123456789/11929
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.85.026317
Appears in Collections:商船學系

Show full item record

Page view(s)

154
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback