Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1200
Title: A novel space-time meshless method for solving the backward heat conduction problem
Authors: Cheng-Yu Ku 
Chih-Yu Liu
Wei-Chung Yeih 
Chein-Shan Liu 
Chia-Ming Fan 
Keywords: Backward heat conduction problem;Trefftz method;Inverse problem;Meshless method
Issue Date: Mar-2019
Journal Volume: 130
Start page/Pages: 109-122
Source: International Journal of Heat and Mass Transfer
Abstract: 
This paper presents a novel space–time meshless method for solving the backward heat conduction problem (BHCP). A numerical approximation is obtained using the Trefftz basis function of the heat equation. The Trefftz method, which differs from conventional collocation methods based on a set of unstructured points in space, is used in this study to collocate boundary points in the space–time coordinate system such that the initial and boundary conditions can both be treated as boundary conditions on the space–time domain boundary. Because the solution in time on the boundary of the domain is unknown, the BHCP can be transformed into an inverse boundary value problem. The numerical solution is obtained by superpositioning the Trefftz base functions that automatically satisfy the governing equation. The validity of the proposed method is established for several test problems, including the one-dimensional BHCP and two-dimensional BHCP. The accuracy of the proposed method is compared with that of a conventional time-marching scheme based on the finite difference method. The results demonstrate that highly accurate numerical solutions can be obtained and errors may not accumulate over the entire time domain. Moreover, the boundary data on the inaccessible boundary can be recovered even when the partial data on the final time boundary are absent.
URI: http://scholars.ntou.edu.tw/handle/123456789/1200
ISSN: 0017-9310
DOI: 10.1016/j.ijheatmasstransfer.2018.10.083
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

18
checked on Oct 8, 2022

Page view(s)

196
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback