Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1248
Title: The Method of Fundamental Solutions with Eigenfunctions Expansion Method for 3D Nonhomogeneous Diffusion Equations
Authors: D.L. Young
C.H. Chen
C.M. Fan 
L.H. Shen
Issue Date: Jan-2009
Journal Volume: 25
Journal Issue: 1
Start page/Pages: 195-211
Source: Numerical Methods for Partial Differential Equations
Abstract: 
After the successful applications of the combination of the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunctions expansion method (EEM) to solve 2D homogeneous and nonhomogeneous diffusion equations by Young et al. (Young et al., Numer Meth Part Differ Equat 22 (2006), 1173), this article intends to extend the same fundamental concepts to calculate more challenging 3D nonhomogeneous diffusion equations. The nonhomogeneous diffusion equations with time-independent source terms and boundary conditions are analyzed by the proposed meshless MFS-MPS-EEM model. Nonhomogeneous diffusion equation in any complex domains can be decomposed into a Poisson equation and a homogeneous diffusion equation by the principle of linear superposition. This approach is proved to be far better off than solutions by using classic method of separation of variables with inefficient multisummation of very sophisticated series expansion from special functions, which can only limit to treat very simple 3D geometries such as cube, cylinder, or sphere. Poisson equation is solved by using the MPS-MFS model, in which the source term in the Poisson equation is first handled by the MPS based on the compactly-supported radial basis functions and the Laplace equation is solved by the MFS. On the other hand, by utilizing the EEM, the homogeneous diffusion equation is first transformed into a Helmholtz equation, which is then solved by the MFS together with the technique of singular value decomposition (SVD) to acquire the eigenvalues and eigenfunctions. After the eigenfunctions are obtained, we can synthesize the diffusion solutions like the orthogonal Fourier series expansions but with only one summation for the series even for multidimensional problems. Numerical results for four case studies of 3D homogeneous and nonhomogeneous diffusion problems show good agreement with the analytical and other numerical solutions, such as finite element method (FEM). Thus, the present numerical scheme has provided a promising meshfree numerical approach to solve 3D nonhomogeneous diffusion equations with time-independent source terms and boundary conditions for very irregular domains. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009
URI: http://scholars.ntou.edu.tw/handle/123456789/1248
ISSN: 0749-159X
DOI: 10.1002/num.20336
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

304
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback