Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1248
DC 欄位值語言
dc.contributor.authorD.L. Youngen_US
dc.contributor.authorC.H. Chenen_US
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorL.H. Shenen_US
dc.date.accessioned2020-11-16T09:46:53Z-
dc.date.available2020-11-16T09:46:53Z-
dc.date.issued2009-01-
dc.identifier.issn0749-159X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1248-
dc.description.abstractAfter the successful applications of the combination of the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunctions expansion method (EEM) to solve 2D homogeneous and nonhomogeneous diffusion equations by Young et al. (Young et al., Numer Meth Part Differ Equat 22 (2006), 1173), this article intends to extend the same fundamental concepts to calculate more challenging 3D nonhomogeneous diffusion equations. The nonhomogeneous diffusion equations with time-independent source terms and boundary conditions are analyzed by the proposed meshless MFS-MPS-EEM model. Nonhomogeneous diffusion equation in any complex domains can be decomposed into a Poisson equation and a homogeneous diffusion equation by the principle of linear superposition. This approach is proved to be far better off than solutions by using classic method of separation of variables with inefficient multisummation of very sophisticated series expansion from special functions, which can only limit to treat very simple 3D geometries such as cube, cylinder, or sphere. Poisson equation is solved by using the MPS-MFS model, in which the source term in the Poisson equation is first handled by the MPS based on the compactly-supported radial basis functions and the Laplace equation is solved by the MFS. On the other hand, by utilizing the EEM, the homogeneous diffusion equation is first transformed into a Helmholtz equation, which is then solved by the MFS together with the technique of singular value decomposition (SVD) to acquire the eigenvalues and eigenfunctions. After the eigenfunctions are obtained, we can synthesize the diffusion solutions like the orthogonal Fourier series expansions but with only one summation for the series even for multidimensional problems. Numerical results for four case studies of 3D homogeneous and nonhomogeneous diffusion problems show good agreement with the analytical and other numerical solutions, such as finite element method (FEM). Thus, the present numerical scheme has provided a promising meshfree numerical approach to solve 3D nonhomogeneous diffusion equations with time-independent source terms and boundary conditions for very irregular domains. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009en_US
dc.language.isoenen_US
dc.relation.ispartofNumerical Methods for Partial Differential Equationsen_US
dc.titleThe Method of Fundamental Solutions with Eigenfunctions Expansion Method for 3D Nonhomogeneous Diffusion Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/num.20336-
dc.identifier.isiWOS:000261734400008-
dc.relation.journalvolume25en_US
dc.relation.journalissue1en_US
dc.relation.pages195-211en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

304
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋