Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1261
Title: Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods
Authors: Der‐Liang Young
Chia-Cheng Tsai 
Chia-Ming Fan 
Keywords: nonhomogeneous diffusion equation;method of fundamental solutions;dual reciprocity method;diffusion fundamental solution;multi‐dimensions
Issue Date: Jul-2004
Publisher: Browse Journals A-Z
Journal Volume: 27
Journal Issue: 4
Start page/Pages: 597-609
Source: Journal of the Chinese Institute of Engineers
Abstract: 
This paper describes a combination of the method of fundamental solutions (MFS) and the dual reciprocity method (DRM) as a mesh‐free numerical method (MFS‐DRM model) to solve 2D and 3D nonhomogeneous diffusion problems. Using our method, the homogeneous solutions of the diffusion equations are solved by the MFS, and the DRM, based on the radial basis functions (RBF) of the thin plate splines (TPS), is employed to solve for particular solutions. The present scheme is free from the frequently used Laplace transform and the finite difference discretization method to deal with the time derivative term in the governing equation. By properly placing the source points in the time‐space domain, the solution is advanced in time until a steady state solution (if one exists) is reached. Since the present method does not need mesh discretization and nodal connectivity, the computational effort and memory storage required are minimal as compared to other domain‐oriented numerical schemes such as FDM, FEM, FVM, etc. Test results obtained for 2D and 3D diffusion problems show good comparability with analytical solutions and other numerical solutions, such as those obtained by the MFS‐DRM model based on the modified Helmholtz fundamental solutions. Thus the present numerical scheme has provided a promising mesh‐free numerical tool to solve nonhomogeneous diffusion problems with space‐time unification for diffusion fundamental solutions.
URI: http://scholars.ntou.edu.tw/handle/123456789/1261
ISSN: 0253-3839
DOI: 10.1080/02533839.2004.9670907
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

24
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

273
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback