Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1264
Title: Solving Boussinesq equations with a meshless finite difference method
Authors: Ting Zhang
Zhen-Huan Lin
Guan-Yi Huang
Chia-Ming Fan 
Po-Wei Li
Keywords: Improved Boussinesq-type equations;Generalized finite difference method;Meshless method;Second-order Runge-Kutta method;Nonlinear waves
Issue Date: Feb-2020
Journal Volume: 198
Source: Ocean Engineering
Abstract: 
This paper mainly focus on presenting a newly-developed meshless numerical scheme, named the generalized finite difference method (GFDM), to efficiently and accurately solve the improved Boussinesq-type equations (BTEs). Based on the improved BTEs, the wave propagated over a flat or irregular bottom topography is described as a two-dimensional horizontal problem with nonlinear water waves. The GFDM and the 2nd-order Runge-Kutta method (RKM) were employed for spatial and temporal discretizations for this problem, respectively. The ramping function and the sponge layer, combing in this proposed scheme, were adopted for incident and outgoing waves, respectively. As one of domain-type meshless methods, GFDM can improve the numerical efficiency due to avoiding time-consuming meshing generation and numerical quadrature. Furthermore, the partial derivatives of Boussinesq equations can be transformed as linear combinations of nearby function values by the moving-least-squares method of the GFDM, simplifying the numerical procedures. Specifically, GFDM is suitable for complex fluid field with some irregular boundaries because of the flexible distribution of nodes. Four numerical examples were selected to verify the accuracy and applicability in the improved BTEs of the proposed meshless scheme. The results were compared with other numerical predictions and experimental observations and good agreements were depicted.
URI: http://scholars.ntou.edu.tw/handle/123456789/1264
ISSN: 0029-8018
DOI: 10.1016/j.oceaneng.2020.106957
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
checked on May 7, 2023

Page view(s)

162
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback