Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1516
Title: Analytical derivation and numerical experiments of degenerate scales for regular N-gon domains in two-dimensional Laplace problems
Authors: Shyh-Rong Kuo 
Jeng-Tzong Chen 
Jia-Wei Lee
Yi-Wei Chen
Keywords: Degenerate scale;Regular N-gon;Conformal radius;Conformal mapping;Gamma function
Issue Date: 15-Jan-2013
Publisher: ScienceDirect
Journal Volume: 219
Journal Issue: 10
Start page/Pages: 5668-5683
Source: Applied Mathematics and Computation 
Abstract: 
Degenerate scale of a regular N-gon domain is studied by using the boundary element method (BEM) and complex variables. Degenerate scale stems from either the non-uniqueness of BIE using the logarithmic kernel or the conformal radius of unit logarithmic capacity in the complex variables. Analytical formula and numerical results for the degenerate scale are obtained by using the conformal radius and boundary element program, respectively. Analytical formula of the degenerate scale contains the Gamma function for the Gamma contour which can be derived from the Schwarz–Christoffel mapping. Based on the dual BEM, the rank-deficiency (mathematical) mode due to the degenerate scale (mathematics) is imbedded in the left unitary vector for the influence matrices of weakly singular (U kernel) and strongly singular (T kernel) integral operators. On the other hand, we obtain the common right unitary vector corresponding to a rigid body mode (physics) in the influence matrices of strongly singular (T kernel) and hypersingular (M kernel) operators after using the singular value decomposition. To deal with the problem of non-unique solution, the constraint of boundary flux equilibrium instead of rigid body term, CHEEF and hypersingular BIE, is added to promote the rank of influence matrices to be full rank. Null field for the exterior domain and interior nonzero field are analytically derived and numerically verified for the normal scale while the interior null field and nonzero exterior field are obtained for the homogeneous Dirichlet problem in the case of the degenerate scale. It is found that the contour of nonzero exterior field for the degenerate scale using the BEM matches well with that of Schwarz–Christoffel transformation. Both analytical and numerical results agree well in the demonstrative examples of right triangle, square, regular 5-gon and regular 6-gon. It is straightforward to extend to general regular N-gon case.
URI: http://scholars.ntou.edu.tw/handle/123456789/1516
ISSN: 0096-3003
DOI: 10.1016/j.amc.2012.11.008
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

35
Last Week
1
Last month
0
checked on Jun 19, 2023

Page view(s)

239
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback