Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16470
標題: Applying bootstrap and radial basis function neural networks developing a climate change statistical downscaling model
作者: J.-M. Chuang
S.-S. Lin
P.-H. Kan
C.-Y. Li 
Y.-L. Hu
關鍵字: 空間統計降尺度;輻狀基底類神經網路;拔靴法;逐步回歸分析;主成份分析;Spatial statistical downscaling;RBFNN;Bootstrap;Stepwise regression procedure;Principal component analysis
公開日期: 十二月-2016
出版社: Taiwan Joint Irrigation Association
卷: 64
期: 4
起(迄)頁: 48-58
來源出版物: Taiwan Water Conservancy
摘要: 
This study applies bootstrap method to build a spatial statistical downscaling model. The Kaohsiung meteorological station is employed as a case study to test the performance of the built model. The stepwise regression procedure (SRP) and principal component analysis (PCA) are applied to select the best input variables from the monthly data collected from the Kaohsiung meteorological station and output data of three general circulation models (GCM), including CGMR, CSMK3 and GFCM2. The radial basis function neural network (RBFNN) is then used to as the building block of the models and genetic algorithms (GA) is used to optimize the parameters of RBFNN. Meanwhile, the bootstrap sampling method is used to estimate the uncertainty of the model. Simulated results show that SRP is better than PCA for the input variable selection of CGMR and GFCM2, but PCA is better than SRP for the input variable selection of CSMK3. In general SRP is better than PCA for the input variable selection. The projected average monthly rainfall of Kaohsiung meteorological station shows a trend of slightly decreasing in the future mid-term and long-term in summer compared with historical rainfall. As in winter rainfall of Kaohsiung meteorological station exhibits a slightly increasing trend in the future mid-term and long-term compared with the historical rainfall. It reveals that the overall future rainfall of B1 scenario is decreasing compared with the historical rainfall. Compared with the historical rainfall, simulated rainfall under A2 scenario in both summer and winter is the smallest one which are 1527.8% in winter in mid-term and -94.3% in summer in mid-term, and the most one which are 1769.3% in winter in long-term and -88.2% in summer in long-term, respectively.
URI: http://scholars.ntou.edu.tw/handle/123456789/16470
ISSN: 0492-1550
顯示於:海洋工程科技學士學位學程(系)

顯示文件完整紀錄

Page view(s)

222
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋