Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16473
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorH.-K.Hongen_US
dc.date.accessioned2021-03-24T07:45:19Z-
dc.date.available2021-03-24T07:45:19Z-
dc.date.issued1994-
dc.identifier.issn0965-9978-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16473-
dc.description.abstractA dual integral formulation for the Laplace equation problem with a corner is derived by using the contour approach surrounding the singularity. It is found that using the contour approach the jump term comes half and half from the free terms in the L and M kernel integrations, which is different from the limiting process from an interior point to a boundary point where the jump term comes from the L kernel only. Thus, the definition of the Hadamard principal value for hypersingular integration at the collocation point of a corner is extended to a generalized sense for both the tangent and normal derivative of double layer potentials in comparison with the conventional definition. Two regularized versions of dual boundary integral equations with corners are proposed to avoid the boundary effect and are tested by an example. The numerical implementation is incorporated in the BEPO2D program. Also, a numerical example with a Dirichlet boundary condition on the corner is verified to determine the validity of the dual integral formulation.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofAdvances in Engineering Softwareen_US
dc.subjectdual boundary integral equationsen_US
dc.subjectdual boundary element methoden_US
dc.subjectcorneren_US
dc.subjectregularized methoden_US
dc.titleDual boundary integral equations at a corner using contour approach around singularityen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0965-9978(94)90019-1-
dc.relation.journalvolume21en_US
dc.relation.journalissue3en_US
dc.relation.pages169-178en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

96
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback