Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16473
Title: Dual boundary integral equations at a corner using contour approach around singularity
Authors: Jeng-Tzong Chen 
H.-K.Hong
Keywords: dual boundary integral equations;dual boundary element method;corner;regularized method
Issue Date: 1994
Publisher: ScienceDirect
Journal Volume: 21
Journal Issue: 3
Start page/Pages: 169-178
Source: Advances in Engineering Software 
Abstract: 
A dual integral formulation for the Laplace equation problem with a corner is derived by using the contour approach surrounding the singularity. It is found that using the contour approach the jump term comes half and half from the free terms in the L and M kernel integrations, which is different from the limiting process from an interior point to a boundary point where the jump term comes from the L kernel only. Thus, the definition of the Hadamard principal value for hypersingular integration at the collocation point of a corner is extended to a generalized sense for both the tangent and normal derivative of double layer potentials in comparison with the conventional definition. Two regularized versions of dual boundary integral equations with corners are proposed to avoid the boundary effect and are tested by an example. The numerical implementation is incorporated in the BEPO2D program. Also, a numerical example with a Dirichlet boundary condition on the corner is verified to determine the validity of the dual integral formulation.
URI: http://scholars.ntou.edu.tw/handle/123456789/16473
ISSN: 0965-9978
DOI: 10.1016/0965-9978(94)90019-1
Appears in Collections:河海工程學系

Show full item record

Page view(s)

96
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback