Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16770
標題: Revisit of Fredholm alternative theorem by using SVD and bordered matrix
作者: Jeng-Tzong Chen 
公開日期: 20-九月-2014
出版社: 第三屆兩岸計算數學研討會
會議論文: 第三屆兩岸計算數學研討會
摘要: 
Fredholm alternative theorem plays an important role in the linear algebra when the matrix is singular. Base on the singular value decomposition (SVD) for the matrix, the null space and range deficiency can be easily and systematically understood. By introducing a slack variable, we obtain a bordered matrix by adding one column vector from the left singular vector with respect to the zero singular value and one row vector from the right singular vector with respect to the zero singular value. It is interesting to find that an original singular matrix is regularized to a non-singular one. The value of the slack variable indicates the infinite solution (zero) or no solution (non-zero) for the original linear algebraic system. To demonstrate this finding, one triangular-domain problem with a degenerate scale and a rigid body mode is solved. Although influence matrices are singular in the boundary integral equation formulation for different problems (degenerate scale in the Dirichlet problem and rigid body mode in the Neumann problem), the corresponding unique solution (Dirichlet problem) and infinite solutions containing a constant potential (Neumann problem) can be obtained by using the bordered matrix and SVD technique. Besides, free-free flexibility matrix of finite element method is also derived from the stiffness matrix by a self-regularization technique.
描述: 
第三屆兩岸計算數學研討會, September 20, 2014, 中國長沙 湘潭大學
URI: http://scholars.ntou.edu.tw/handle/123456789/16770
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

220
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋