Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16833
Title: A New Approach for Piezoelectricity Problems with Circular Inclusions
Other Titles: 求解含圓形夾雜壓電問題之新方法
Authors: An-Chien Wu
Jeng-Tzong Chen 
Keywords: anti-plane deformation;null-field integral equation;degenerate kernel;Fourier series;circular inclusion;piezoelectricity;Laplace problem;反平面位移;零場積分方程式;退化核;傅立葉級數;圓形夾雜;壓電力學;拉普拉斯方程式
Issue Date: 1-Sep-2006
Publisher: The 8th National Conference on Structural Engineering
Conference: The 8th National Conference on Structural Engineering
Abstract: 
In this paper, we derive the null-field integral equation for piezoelectricity problems with circular inclusions under remote anti-plane shears and in-plane electric fields in two directions. To fully capture circular geometries, separable expressions of fundamental solutions in the polar coordinate for field and source points and Fourier series for boundary densities are adopted to ensure the exponential convergence. Four gains are obtained, (1) well-posed model, (2) singularity free, (3) boundary-layer effect free and (4) exponential convergence. The solution is formulated in a manner of semi-analytical form since error purely attributes to the truncation of Fourier series. Problems with two piezoelectric inclusions for stress and electric displacement distributions are revisited to demonstrate the validity of our method. The main feature of the present paper is that the new formulation can be generalized to multiple circular inclusions in a straightforward way without any difficulty. 本文使用零場積分方程式,求解同時受反平面剪力及平面電場之含圓形夾雜壓電問題。為了充分利用圓形邊界的特性,將基本解及邊界物理量分別展開成退化核及傅立葉級數的形式;因此可以得到四個好處:矩陣良態模式、避免奇異積分、沒有邊界層效應、指數收歛。由於誤差僅來自於擷取有限項的傅立葉級數,故本方法可視為半解析法。文中求解含兩圓形夾雜之應力與電位移分布,以示範驗證本方法的有效性。本方法最大的特色是,可以直接廣泛地求解含多圓形夾雜之壓電問題。
Description: 
Sun Moon Lake, Taiwan, R. O. C., 1-3 Sept. 2006
URI: http://scholars.ntou.edu.tw/handle/123456789/16833
Appears in Collections:河海工程學系

Show full item record

Page view(s)

71
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback