Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16953
Title: Bayesian Approach to Perceptual Edge Preservation in Computer Vision
Authors: Ren-Jie Huang
Jung-Hua Wang 
Chun-Shun Tseng
Keywords: mask;input image;Removing the Background;Perceptual Edges;Pre Process
Issue Date: 1-May-2017
Publisher: Horizon Research
Journal Volume: 5
Start page/Pages: 113-119
Source: Computer Science and Information Technology
Abstract: 
This paper presents a novel approach for preserving perceptual edges representing boundaries of objects as perceived by human eyes. First, a subset of pixels (pixels of interest, POI) in an input image is selected by a pre-process of removing background and noise. One by one as a target pixel, each of POI is subjected to a Bayesian decision. This approach is characterized by iteratively employing a shape-variable mask to sample gradient orientations of pixels for measuring the directivity of a target pixel, the mask shape is updated after each iteration. We show that a converged mask covers pixels that best fit the orientation similarity with the target pixel, which in effect fulfills the similarity and proximity principles in Gestalt theory. Subsequently, a Bayesian rule is applied to the converged directivity to determine whether the target pixel belongs to a perceptual edge. Instead of using state-of-the-art edge detectors such as Canny detector [1], a pre-process combining Gaussian Mixture Model (GMM) [2] and Difference of Gaussian (DoG) [3] is devised to select POI, wherein GMM is responsible for removing the background of an input image (first screening), whereas DoG for filtering noisy or false contours (second screening). Experimental results indicate that a great amount of computational load can be saved, in comparison with the use of Canny detector in our previous work [4]. Since the perceptual edges are useful for forming a complete object contour corresponding to the human visual perception, the results of this paper can be potentially cooperated with other more advanced object detection methods such as the deep learning-based SSD [5] to achieve the same effect as the human visual system in dealing with obscured or corrupted input images, whereby even if a target object is occluded by other objects or corrupted by rainy water, it can be still identified correctly, this feature should greatly enhance the operational safety of unmanned vehicles, unmanned aircraft and other autonomous systems.
URI: http://scholars.ntou.edu.tw/handle/123456789/16953
DOI: doi:10.13189/csit.2017.050304
Appears in Collections:電機工程學系

Show full item record

Page view(s)

164
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback