Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16973
Title: Competitive neural network scheme for learning vector quantisation
Authors: Jung-Hua Wang 
Peng, CY
Issue Date: 29-Apr-1999
Publisher: IEE-INST ELEC ENG
Journal Volume: 35
Journal Issue: 9
Start page/Pages: 725-726
Source: ELECTRONICS LETTERS
Abstract: 
A novel self-development neural network scheme, which employs two resource counters to record node activity, is presented. The proposed network not only harmonises equi-error and equiprobable criteria, but it also avoids the stability-and-plasticity dilemma. Simulation results show that the new scheme displays superior performance (in terms of measured MSE, MAE, and training speed) over other neural network models.
URI: http://scholars.ntou.edu.tw/handle/123456789/16973
ISSN: 0013-5194
DOI: 10.1049/el:19990505
Appears in Collections:電機工程學系

Show full item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

98
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback