Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17034
標題: Scale equalization higher-order neural networks
作者: Jung-Hua Wang 
Keng-Hsuan Wu
Fu-Chiang Chang
公開日期: 十一月-2004
出版社: IEEE
會議論文: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, 2004. IRI 2004.
Las Vegas, NV, USA
摘要: 
This paper presents a novel approach, called scale equalization (SE), to implement higher-order neural networks. SE is particularly useful in eliminating the scale divergence problem commonly encountered in higher order networks. Generally, the larger the scale divergence is, the more the number of training steps required to complete the training process. Effectiveness of SE is illustrated with an exemplar higher-order network built on the Sigma-Pi network (SESPN) applied to function approximation. SESPN requires the same computation time as SPN per epoch, but it takes much less number of epochs to compete the training process. Empirical results are provided to verify that SESPN outperforms other higher-order neural networks in terms of computation efficiency.
URI: http://scholars.ntou.edu.tw/handle/123456789/17034
DOI: 10.1109/IRI.2004.1431529
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

90
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋