Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17099
Title: Minimum Error Entropy Based EKF for GPS Code Tracking Loop
Authors: Jwo, Dah-Jing 
Lai, Jen-Hsien
Keywords: Entropy;extended Kalman filter;multipath;global positioning system;tracking loop
Issue Date: 1-Jan-2021
Publisher: TECH SCIENCE PRESS
Journal Volume: 67
Journal Issue: 3
Start page/Pages: 2883-2898
Source: CMC-COMPUTERS MATERIALS & CONTINUA
Abstract: 
This paper investigates the minimum error entropy based extended Kalman filter (MEEKF) for multipath parameter estimation of the Global Positioning System (GPS). The extended Kalman filter (EKF) is designed to give a preliminary estimation of the state. The scheme is designed by introducing an additional term, which is tuned according to the higher order moment of the estimation error. The minimum error entropy criterion is introduced for updating the entropy of the innovation at each time step. According to the stochastic information gradient method, an optimal filer gain matrix is obtained. The mean square error criterion is limited to the assumption of linearity and Gaussianity. However, non-Gaussian noise is often encountered in many practical environments and their performances degrade dramatically in non-Gaussian cases. Most of the existing multipath estimation algorithms are usually designed for Gaussian noise. The I (in-phase) and Q (quadrature) accumulator outputs from the GPS correlators are used as the observational measurements of the EKF to estimate the multipath parameters such as amplitude, code delay, phase, and carrier Doppler. One reasonable way to obtain an optimal estimation is based on the minimum error entropy criterion. The MEEKF algorithm provides better estimation accuracy since the error entropy involved can characterize all the randomness of the residual. Performance assessment is presented to evaluate the effectivity of the system designs for GPS code tracking loop with multipath parameter estimation using the minimum error entropy based extended Kalman filter.
URI: http://scholars.ntou.edu.tw/handle/123456789/17099
ISSN: 1546-2218
DOI: 10.32604/cmc.2021.015102
Appears in Collections:通訊與導航工程學系

Show full item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

204
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback