Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 水產養殖學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17163
Title: Exposure to silver impairs learning and social behaviors in adult zebrafish
Authors: Fu, Chih-Wei
Horng, Jiun-Lin
Tong, Sok-Keng
Cherng, Bor-Wei
Liao, Bo-Kai 
Lin, Li-Yih
Chou, Ming-Yi
Keywords: Aquatic Toxicity;Silver nitrate;Behavioral alteration
Issue Date: 5-Feb-2021
Publisher: ELSEVIER
Journal Volume: 403
Source: JOURNAL OF HAZARDOUS MATERIALS
Abstract: 
Silver and silver nanoparticles are used in several consumer products, particularly sterilizing agents. Ag+ released from the particles causes physiological damages of aquatic organisms. However, the effects of silver on neural and behavioral functions of fish remain unclear. Here, we used zebrafish as a model to investigate the impacts of silver on social, learning and memory behaviors in teleost. Adult zebrafish showed mortality rates of 12.875% and 100% on 72 h exposure to 30 and >= 50 ppb of silver nitrate, respectively. Silver accumulation in the brain increased on exposure to 10 and 30 ppb of AgNO3. The physical fitness of the zebrafish, measured by novel tank diving test and swimming performance, decreased after 72 h incubation in 30 ppb of AgNO3. Exposure to 10 ppb of AgNO3 impaired social preference, social recognition, learning, and memory, but did not affect anxiety level, aggressiveness, and shoaling behavior. In situ hybridization of c-fos mRNA showed that AgNO3 treatment decreased neural activity in the brain areas crucial for learning, memory, and social behaviors, including the medial and dorsal zones of the dorsal telencephalic area. In conclusion, 72 h exposure to AgNO3 in a sublethal level impaired learning and social behaviors, indicating neurotoxicity in adult zebrafish.
URI: http://scholars.ntou.edu.tw/handle/123456789/17163
ISSN: 0304-3894
DOI: 10.1016/j.jhazmat.2020.124031
Appears in Collections:水產養殖學系

Show full item record

WEB OF SCIENCETM
Citations

19
Last Week
0
Last month
2
checked on Jun 27, 2023

Page view(s)

163
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback