Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17276
標題: Health-diagnosis of electromechanical system with a principal-component bayesian neural network algorithm
作者: Wen, Bor-Jiunn 
Lin, Yung-Sheng
Tu, Hsing-Min
Hsieh, Cheng-Chang
關鍵字: Tele-measurement;electromechanical system;principal-component bayesian neural network algorithm;health-diagnosis;cloud website server
公開日期: 1-一月-2021
出版社: IOS PRESS
卷: 40
期: 4
起(迄)頁: 7671-7680
來源出版物: JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
摘要: 
This study proposes a cloud tele-measurement technique on an electromechanical system, and uses a neural network algorithm based on principal-component analysis (PCA) to quickly diagnose its performance. Three vibration, three temperature, electrical voltage, and current sensors were mounted on the electromechanical system, and the external braking device was used to provide different load-states to simulate the operating states of the motor under different conditions. Moreover, a single-chip multiprocessor was used through the sensor to instantly measure the various load-state simulations of the motor. The operating states of the electromechanical system were classified as normal, abnormal, and required-to-be-turned-off states using a principal-component Bayesian neural network algorithm (PBNNA), to enable their quick diagnosis. Furthermore, PBNNA successfully reduces the dimensionality of the multivariate dataset for rapid analysis of the electromechanical system's performance. The accuracy rates of health-diagnosis based on the Bayesian neural network algorithm and PBNNA models were obtained as 97.7% and 98%, respectively. Finally, the single-chip multiprocessor based on PBNNA is used to automatically upload the measurement and analysis results of the electromechanical system to the cloud website server. The establishment of this model system can optimize prediction judgment and decision-making based on the damage situation to achieve the goals of intelligence and optimization of factory reconstruction.
URI: http://scholars.ntou.edu.tw/handle/123456789/17276
ISSN: 1064-1246
DOI: 10.3233/JIFS-189587
顯示於:機械與機電工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

165
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋