Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17276
DC 欄位值語言
dc.contributor.authorWen, Bor-Jiunnen_US
dc.contributor.authorLin, Yung-Shengen_US
dc.contributor.authorTu, Hsing-Minen_US
dc.contributor.authorHsieh, Cheng-Changen_US
dc.date.accessioned2021-06-10T05:33:53Z-
dc.date.available2021-06-10T05:33:53Z-
dc.date.issued2021-01-01-
dc.identifier.issn1064-1246-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17276-
dc.description.abstractThis study proposes a cloud tele-measurement technique on an electromechanical system, and uses a neural network algorithm based on principal-component analysis (PCA) to quickly diagnose its performance. Three vibration, three temperature, electrical voltage, and current sensors were mounted on the electromechanical system, and the external braking device was used to provide different load-states to simulate the operating states of the motor under different conditions. Moreover, a single-chip multiprocessor was used through the sensor to instantly measure the various load-state simulations of the motor. The operating states of the electromechanical system were classified as normal, abnormal, and required-to-be-turned-off states using a principal-component Bayesian neural network algorithm (PBNNA), to enable their quick diagnosis. Furthermore, PBNNA successfully reduces the dimensionality of the multivariate dataset for rapid analysis of the electromechanical system's performance. The accuracy rates of health-diagnosis based on the Bayesian neural network algorithm and PBNNA models were obtained as 97.7% and 98%, respectively. Finally, the single-chip multiprocessor based on PBNNA is used to automatically upload the measurement and analysis results of the electromechanical system to the cloud website server. The establishment of this model system can optimize prediction judgment and decision-making based on the damage situation to achieve the goals of intelligence and optimization of factory reconstruction.en_US
dc.language.isoEnglishen_US
dc.publisherIOS PRESSen_US
dc.relation.ispartofJOURNAL OF INTELLIGENT & FUZZY SYSTEMSen_US
dc.subjectTele-measurementen_US
dc.subjectelectromechanical systemen_US
dc.subjectprincipal-component bayesian neural network algorithmen_US
dc.subjecthealth-diagnosisen_US
dc.subjectcloud website serveren_US
dc.titleHealth-diagnosis of electromechanical system with a principal-component bayesian neural network algorithmen_US
dc.typejournal articleen_US
dc.identifier.doi10.3233/JIFS-189587-
dc.identifier.isiWOS:000640518000167-
dc.relation.journalvolume40en_US
dc.relation.journalissue4en_US
dc.relation.pages7671-7680en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-0163-6070-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:機械與機電工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

165
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋