Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17277
DC 欄位值語言
dc.contributor.authorWei, Chih-Chiangen_US
dc.date.accessioned2021-06-10T05:33:53Z-
dc.date.available2021-06-10T05:33:53Z-
dc.date.issued2021-01-
dc.identifier.issn1392-3730-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17277-
dc.description.abstractStrong wind during extreme weather conditions (e.g., strong winds during typhoons) is one of the natural factors that cause the collapse of frame-type scaffolds used in facade work. This study developed an alert system for use in determining whether the scaffold structure could withstand the stress of the wind force. Conceptually, the scaffolds collapsed by the warning system developed in the study contains three modules. The first module involves the establishment of wind velocity prediction models. This study employed various deep learning and machine learning techniques, namely deep neural networks, long short-term memory neural networks, support vector regressions, random forest, and k-nearest neighbors. Then, the second module contains the analysis of wind force on the scaffolds. The third module involves the development of the scaffold collapse evaluation approach. The study area was Taichung City, Taiwan. This study collected meteorological data from the ground stations from 2012 to 2019. Results revealed that the system successfully predicted the possible collapse time for scaffolds within 1 to 6 h, and effectively issued a warning time. Overall, the warning system can provide practical warning information related to the destruction of scaffolds to construction teams in need of the information to reduce the damage risk.en_US
dc.language.isoen_USen_US
dc.publisherVILNIUS GEDIMINAS TECH UNIVen_US
dc.relation.ispartofJ CIV ENG MANAGen_US
dc.subjectSUPPORT VECTOR REGRESSIONen_US
dc.subjectBIDIRECTIONAL LSTMen_US
dc.subjectGENETIC ALGORITHMSen_US
dc.subjectPREDICTIONen_US
dc.subjectCLASSIFICATIONen_US
dc.subjectPARAMETERSen_US
dc.subjectFAILUREen_US
dc.subjectCONTEXTen_US
dc.titleCollapse Warning System Using LSTM Neural Networks For Construction Disaster Prevention In Extreme Wind Weatheren_US
dc.typejournal articleen_US
dc.identifier.doi10.3846/jcem.2021.14649-
dc.identifier.isiWOS:000644704700002-
dc.relation.journalvolume27en_US
dc.relation.journalissue4en_US
dc.relation.pages230-245en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:11 SUSTAINABLE CITIES & COMMUNITIES
13 CLIMATE ACTION
海洋環境資訊系
14 LIFE BELOW WATER
顯示文件簡單紀錄

Page view(s)

366
上周
1
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋