Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17387
DC 欄位值語言
dc.contributor.authorWang, Fajieen_US
dc.contributor.authorZhao, Qinghaien_US
dc.contributor.authorChen, Zengtaoen_US
dc.contributor.authorFan, Chia-Mingen_US
dc.date.accessioned2021-06-28T02:29:41Z-
dc.date.available2021-06-28T02:29:41Z-
dc.date.issued2021-05-15-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17387-
dc.description.abstractIn this paper, a novel collocation method is presented for the efficient and accurate evaluation of the two-dimensional elliptic partial differential equation. In the new method, the physical domain is discretized into a series of overlapping small (local) subdomains, and in each of the subdomain, a localized Chebyshev collocation method is applied in which the unknown functions at every node can be computed by using a linear combination of unknowns at its near-by nodes. The Chebyshev polynomials employed here can provide the spectral accuracy of new approach. The concept of the local subdomain is introduced to derive a sparse system, which ensures the feasibility for large-scale simulation. This paper aims at proposing a new method to solve general partial differential equations accurately and efficiently. Several numerical examples including Poisson equation, Helmholtz-type equation and transient heat conduction equation are provided to demonstrate the validity and applicability of the proposed method. Numerical experiments indicate that the localized Chebyshev collocation method is very promising for the efficient and accurate solution of large-scale problems. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCIENCE INCen_US
dc.relation.ispartofAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.subjectMeshless methoden_US
dc.subjectChebyshev polynomialsen_US
dc.subjectLarge-scale problemen_US
dc.subjectPoisson equationen_US
dc.subjectHelmholtz-type equationen_US
dc.titleLocalized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domainsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.amc.2020.125903-
dc.identifier.isiWOS:000617277300008-
dc.relation.journalvolume397en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

29
上周
0
上個月
4
checked on 2023/6/27

Page view(s)

563
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋