Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17387
Title: Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains
Authors: Wang, Fajie
Zhao, Qinghai
Chen, Zengtao
Fan, Chia-Ming 
Keywords: Meshless method;Chebyshev polynomials;Large-scale problem;Poisson equation;Helmholtz-type equation
Issue Date: 15-May-2021
Publisher: ELSEVIER SCIENCE INC
Journal Volume: 397
Source: APPLIED MATHEMATICS AND COMPUTATION
Abstract: 
In this paper, a novel collocation method is presented for the efficient and accurate evaluation of the two-dimensional elliptic partial differential equation. In the new method, the physical domain is discretized into a series of overlapping small (local) subdomains, and in each of the subdomain, a localized Chebyshev collocation method is applied in which the unknown functions at every node can be computed by using a linear combination of unknowns at its near-by nodes. The Chebyshev polynomials employed here can provide the spectral accuracy of new approach. The concept of the local subdomain is introduced to derive a sparse system, which ensures the feasibility for large-scale simulation. This paper aims at proposing a new method to solve general partial differential equations accurately and efficiently. Several numerical examples including Poisson equation, Helmholtz-type equation and transient heat conduction equation are provided to demonstrate the validity and applicability of the proposed method. Numerical experiments indicate that the localized Chebyshev collocation method is very promising for the efficient and accurate solution of large-scale problems. (C) 2020 Elsevier Inc. All rights reserved.
URI: http://scholars.ntou.edu.tw/handle/123456789/17387
ISSN: 0096-3003
DOI: 10.1016/j.amc.2020.125903
Appears in Collections:河海工程學系

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback