Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17497
DC FieldValueLanguage
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorHong, Hsu-Huien_US
dc.date.accessioned2021-08-05T02:15:06Z-
dc.date.available2021-08-05T02:15:06Z-
dc.date.issued2021-07-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17497-
dc.description.abstractThis letter presents a self-adaptive data-driven learning method for enhanced probabilistic prediction of voltage stability margin (VSM). An online probabilistic extreme learning machine (ELM) algorithm based on the power transformation technique is developed. The prediction interval (PI) estimation for VSM is formulated as a Box-Cox transformation (BT) model to take into account uncertainties associated with predictions. The parameters in the transformed model are determined by the maximum likelihood estimator. The proposed PI-based VSM estimation method is applied to power grids with high proliferation of renewable energy generation. It enables to update the prediction model online and adapt to changing operating conditions. Numerical studies along with comparative results demonstrate the efficacy and robustness of the proposed method.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE T POWER SYSTen_US
dc.subjectMACHINEen_US
dc.titleAn Intelligent Data-Driven Learning Approach to Enhance Online Probabilistic Voltage Stability Margin Predictionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TPWRS.2021.3067150-
dc.identifier.isiWOS:000664032400087-
dc.relation.journalvolume36en_US
dc.relation.journalissue4en_US
dc.relation.pages3790-3793en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:機械與機電工程學系
07 AFFORDABLE & CLEAN ENERGY
Show simple item record

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

160
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback