Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/17497
DC 欄位值語言
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorHong, Hsu-Huien_US
dc.date.accessioned2021-08-05T02:15:06Z-
dc.date.available2021-08-05T02:15:06Z-
dc.date.issued2021-07-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17497-
dc.description.abstractThis letter presents a self-adaptive data-driven learning method for enhanced probabilistic prediction of voltage stability margin (VSM). An online probabilistic extreme learning machine (ELM) algorithm based on the power transformation technique is developed. The prediction interval (PI) estimation for VSM is formulated as a Box-Cox transformation (BT) model to take into account uncertainties associated with predictions. The parameters in the transformed model are determined by the maximum likelihood estimator. The proposed PI-based VSM estimation method is applied to power grids with high proliferation of renewable energy generation. It enables to update the prediction model online and adapt to changing operating conditions. Numerical studies along with comparative results demonstrate the efficacy and robustness of the proposed method.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE T POWER SYSTen_US
dc.subjectMACHINEen_US
dc.titleAn Intelligent Data-Driven Learning Approach to Enhance Online Probabilistic Voltage Stability Margin Predictionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TPWRS.2021.3067150-
dc.identifier.isiWOS:000664032400087-
dc.relation.journalvolume36en_US
dc.relation.journalissue4en_US
dc.relation.pages3790-3793en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:機械與機電工程學系
07 AFFORDABLE & CLEAN ENERGY
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

5
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

160
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋