Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1775
Title: Temperature dependence of the surface-plasmon-induced Goos-Hanchen shifts
Authors: C. W. Chen
H.-P. Chiang 
D. P. Tsai
P. T. Leung
Issue Date: Apr-2012
Publisher: Springer Nature
Journal Volume: 107
Journal Issue: 1
Start page/Pages: pages111–118
Source: Applied Physics B-Lasers and Optics
Abstract: 
Optical sensing of temperature variations is explored by studying the Goos–Hänchen (GH) lateral shift of a reflected light beam from various device based on the surface plasmon (SP) excitation at metal-dielectric interfaces. Both the Kretchman and the Sarid geometry will be considered, where the temperature variations of the GH shifts associated with excitation of both the regular and the long-range SP will be studied. It is found that while the SP-induced shifts and their temperature sensitivities are much greater than those from a bare metallic surface, these sensitivities are comparable between the shifts induced by the different kinds of SP, although the long-range SP can in general induce much greater values in the GH shifts, as reported recently in the literature.
URI: http://scholars.ntou.edu.tw/handle/123456789/1775
ISSN: 0946-2171
DOI: 10.1007/s00340-011-4756-0
Appears in Collections:光電與材料科技學系

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback