Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17767
DC FieldValueLanguage
dc.contributor.authorWei, Chih-Chiangen_US
dc.contributor.authorChang, Hao-Chunen_US
dc.date.accessioned2021-10-13T05:50:54Z-
dc.date.available2021-10-13T05:50:54Z-
dc.date.issued2021-08-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17767-
dc.description.abstractTaiwan is an island, and its economic activities are primarily dependent on maritime transport and international trade. However, Taiwan is also located in the region of typhoon development in the Northwestern Pacific Basin. Thus, it frequently receives strong winds and large waves brought by typhoons, which pose a considerable threat to port operations. To determine the real-time status of winds and waves brought by typhoons near the coasts of major ports in Taiwan, this study developed models for predicting the wind speed and wave height near the coasts of ports during typhoon periods. The forecasting horizons range from 1 to 6 h. In this study, the gated recurrent unit (GRU) neural networks and convolutional neural networks (CNNs) were combined and adopted to formulate the typhoon-induced wind and wave height prediction models. This work designed two wind speed prediction models (WIND-1 and WIND-2) and four wave height prediction models (WAVE-1 to WAVE-4), which are based on the WIND-1 and WIND-2 model outcomes. The Longdong and Liuqiu Buoys were the experiment locations. The observatory data from the ground stations and buoys, as well as radar reflectivity images, were adopted. The results indicated that, first, WIND-2 has a superior wind speed prediction performance to WIND-1, where WIND-2 can be used to identify the temporal and spatial changes in wind speeds using ground station data and reflectivity images. Second, WAVE-4 has the optimal wave height prediction performance, followed by WAVE-3, WAVE-2, and WAVE-1. The results of WAVE-4 revealed using the designed models with in-situ and reflectivity data directly yielded optimal predictions of the wind-based wave heights. Overall, the results indicated that the presented combination models were able to extract the spatial image features using multiple convolutional and pooling layers and provide useful information from time-series data using the GRU memory cell units. Overall, the presented models could exhibit promising results.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORS-BASELen_US
dc.subjectDOPPLER RADAR OBSERVATIONSen_US
dc.subjectMODELen_US
dc.subjectNETWORKen_US
dc.subjectPREDICTIONen_US
dc.subjectRETRIEVALen_US
dc.subjectFIELDSen_US
dc.titleForecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurementsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s21155234-
dc.identifier.isiWOS:000682177000001-
dc.relation.journalvolume21en_US
dc.relation.journalissue15en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:08 DECENT WORK & ECONOMIC GROWTH
海洋環境資訊系
Show simple item record

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

411
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback