Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17769
DC FieldValueLanguage
dc.contributor.authorTseng, Yu-Haoen_US
dc.contributor.authorLu, Ching-Yuanen_US
dc.contributor.authorZheng, Quananen_US
dc.contributor.authorHo, Chung-Ruen_US
dc.date.accessioned2021-10-13T05:50:54Z-
dc.date.available2021-10-13T05:50:54Z-
dc.date.issued2021-08-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17769-
dc.description.abstractSea surface currents observed by high-frequency (HF) radars have been widely used in ocean circulation research. In this study, hourly sea surface currents observed by the Taiwan Coastal Ocean Dynamics Applications Radar (CODAR) system from 2015 to 2019 were analyzed by the empirical orthogonal function (EOF) analysis to reveal the characteristics of the sea surface currents around Taiwan Island. The study area is divided into two regions, the Kuroshio region east of Taiwan Island and the Taiwan Strait west of Taiwan Island. In the Kuroshio region, the first EOF mode shows that the Kuroshio is characterized by higher current speeds with greater variability in summer. The second and third EOF modes present a dipole eddy pair and single eddy impingement on the Kuroshio during different periods. The seasonal variation of the dipole eddy pair indicates that the cyclonic/anticyclonic eddy on the north/south side appears more frequently in summer. Single eddy impingement occurs at multiple periods, including daily, intraseasonal, interseasonal, and annual periods. For the Taiwan Strait, the first EOF mode displays the tide signals. The tides enter the Taiwan Strait from the north and south, forming strong sea surface currents around the northern tip of Taiwan Island and the Penghu Archipelago. The second EOF mode exhibits the seasonal changes of the sea surface currents driven by the monsoon winds. The sea surface currents in the northern Taiwan Strait are relatively strong, possibly due to the narrow and shallow terrain there. The high spatiotemporal resolution of sea surface currents derived from CODAR observations provide more detailed characteristics of sea surface circulation around Taiwan Island.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofREMOTE SENSINGen_US
dc.subjectCODARen_US
dc.subjectEOF analysisen_US
dc.subjectsea surface currenten_US
dc.subjectKuroshioen_US
dc.subjectTaiwan Straiten_US
dc.titleCharacteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/rs13153025-
dc.identifier.isiWOS:000682215700001-
dc.relation.journalvolume13en_US
dc.relation.journalissue15en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-7629-2765-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
Appears in Collections:海洋環境資訊系
Show simple item record

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
3
checked on Jun 27, 2023

Page view(s)

195
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback