Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18077
DC FieldValueLanguage
dc.contributor.authorHsu-Yang Kungen_US
dc.contributor.authorChi-Hua Chenen_US
dc.contributor.authorHao-Hsiang Kuen_US
dc.date.accessioned2021-10-28T07:59:05Z-
dc.date.available2021-10-28T07:59:05Z-
dc.date.issued2012-04-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/18077-
dc.description.abstractEffective disaster prediction relies on using correct disaster decision model to predict the disaster occurrence accurately. This study proposes three effective debris-flow prediction models and an inference engine to predict and decide the debris-flow occurrence in Taiwan. The proposed prediction models are based on linear regression, multivariate analysis, and back-propagation networks. To create a practical simulation environment, the decision database is the pre-analyzed 181 potential debris-flows in Taiwan. According to the simulation results, the prediction model based on back-propagation networks predicted the debris flow most accurately. Moreover, a Real-time Mobile Debris Flow Disaster Forecast System (RM(DF)2) was implemented as a three-tier architecture consisting of mobile appliances, intelligent situation-aware agents and decision support servers based on the wireless/mobile Internet communications. The RM(DF)2 system provides real-time communication between the disaster area and the rescue-control center, and effectively prevents and manages debris-flow disasters.en_US
dc.language.isoenen_US
dc.subjectDebris-flow prediction modelsen_US
dc.subjectDisaster preventionen_US
dc.subjectBack-propagation networken_US
dc.subjectDecision support systemen_US
dc.subjectMobile multimedia communicationsen_US
dc.titleDesigning intelligent disaster prediction models and systems for debris-flow disasters in Taiwanen_US
dc.typejournal articleen_US
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2011.11.083-
dc.relation.journalvolume39en_US
dc.relation.journalissue5en_US
dc.relation.pages5838-5856en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptInstitute of Food Safety and Risk Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptBachelor Degree Program in Ocean Business Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:食品安全與風險管理研究所
Show simple item record

Page view(s)

227
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback