Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18140
Title: Parameter Estimation of Nonlinear System Based on Hybrid Intelligent Method
Authors: Jih-Gau Juang 
Bo-Shian Lin
Chien-Kuo Li
Keywords: parameter estimation;Nonlinear systems;recurrent neural networks;Neural networks;Neurons;Recursive estimation;system identification;Resonance light scattering;neurofeedback;Genetics
Issue Date: 2004
Publisher: IEEE
Journal Volume: 4
Start page/Pages: 3365-3370
Conference: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)
The Hague, Netherlands
Abstract: 
Parameter estimation of nonlinear system using hybrid intelligent method is presented. A recursive least squares estimation combined with genetic algorithm is used in this study. A recurrent neural network for system identification and a conventional parameter estimation using recursive least-squares method are also given for comparison. After test, the proposed scheme has better performance on parameter estimation than the conventional least-squares estimation and the recurrent neural network.
URI: http://scholars.ntou.edu.tw/handle/123456789/18140
ISBN: 0-7803-8566-7
ISSN: 1062-922X
DOI: 10.1109/ICSMC.2004.1400862
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

114
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback