Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/18297
標題: Applying composite kernel to kernel-based nonparametric weighted feature extraction
作者: Chih-Sheng Huang
Cheng-Hsuan Li
Shih-Syun Lin 
Bor-chen Kuo
關鍵字: Kernel;Feature extraction;Statistics;Covariance matrix;Linear discriminant analysis;Electric variables measurement;Data mining;Scattering;Robustness;Hilbert space
公開日期: 15-六月-2010
出版社: IEEE
摘要: 
In the recent researches show that nonparametric weighted feature extraction (NWFE) is a useful method for extracting hyperspectral image features. Kernel-based NWFE (KNWFE) is applying the kernel method to extend the more effective projected features in the feature space. It had been showed the performance of KNWFE is better than NWFE. In this study, we would apply a composite kernel function with spectral and spatial information to KNWFE, and hope this composite kernel to KNWFE can get a better performance than the spectral-based kernel function to KNWFE. In the experiment results show that the KNWFE with composite kernel, include the spectral and spatial information, outperforms the KNWFE with the only spectral based kernel function.
URI: http://scholars.ntou.edu.tw/handle/123456789/18297
ISSN: 2156-2318
DOI: 10.1109/ICIEA.2010.5515345
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

127
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋