Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18331
Title: Generalized finite difference method for solving two-dimensional nonlinear obstacle problems
Authors: Hsin-Fang Chan
Chia-Ming Fan 
Chia-Wen Kuo
Keywords: Obstacle problems;Generalized finite difference method;Fictitious time integration method;Meshless method;Non-linear free boundary problems
Issue Date: Sep-2013
Journal Volume: 37
Journal Issue: 9
Start page/Pages: 1189-1196
Source: Engineering Analysis with Boundary Elements
Abstract: 
In this study, the obstacle problems, also known as the non-linear free boundary problems, are analyzed by the generalized finite difference method (GFDM) and the fictitious time integration method (FTIM). The GFDM, one of the newly-developed domain-type meshless methods, is adopted in this study for spatial discretization. Using GFDM can avoid the tasks of mesh generation and numerical integration and also retain the high accuracy of numerical results. The obstacle problem is extremely difficult to be solved by any numerical scheme, since two different types of governing equations are imposed on the computational domain and the interfaces between these two regions are unknown. The obstacle problem will be mathematically formulated as the non-linear complementarity problems (NCPs) and then a system of non-linear algebraic equations (NAEs) will be formed by using the GFDM and the Fischer–Burmeister NCP-function. Then, the FTIM, a simple and powerful solver for NAEs, is used solve the system of NAEs. The FTIM is free from calculating the inverse of Jacobian matrix. Three numerical examples are provided to validate the simplicity and accuracy of the proposed meshless numerical scheme for dealing with two-dimensional obstacle problems.
URI: http://scholars.ntou.edu.tw/handle/123456789/18331
DOI: 10.1016/j.enganabound.2013.05.004
Appears in Collections:河海工程學系

Show full item record

Page view(s)

110
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback