Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/18662
Title: An experimentally validated numerical model for the near-field explosion of an ammunition storage magazine.
Authors: Cheng-Wei Hung
Ying-Kuan Tsai
Tai-An Chen 
Pin-Wen Wu
Keywords: blast pressure prediction;ammunition storage magazine;near-field explosion;finite element analysis
Issue Date: Sep-2020
Journal Volume: 10
Journal Issue: 19
Start page/Pages: 6849
Abstract: 
The complexity of the explosions makes it difficult to evaluate a munition storage site’s safety. The peak overpressure associated with a blast wave that propagates from a blast is the governing factor that determines the damage to the buildings around the area. Current codes for predicting the blast pressure from an explosion are mostly applicable for a relatively long-range explosion instead of a near-field explosion. This study evaluated the rationale for the current criteria to assess limitations in the different methods and propose an alternative approach based on experimental and numerical results. This study used a small number of explosives and a small-sized ammunition storage magazine specimen to conduct explosion experiments inside an ammunition storage magazine. The ratio of the blast pressure outside the storage magazine to that at the portal of the storage magazine was compared with the empirical equations and experiments from the references, which were more conservative than the experimental values. The optimal exponential equation was proposed after a regression analysis; this equation is applicable to 1 to 653 times the portal diameter outside the ammunition storage magazine. In terms of the effect of a retaining wall on the blast inside the storage magazine, the longitudinal’s extreme value was reduced by 37–42%, while that of the transverse blast was increased by 8–20%. In terms of the numerical simulations, the extreme value of the external blast within one to five times the portal diameter range outside the ammunition storage magazine could be predicted effectively.
URI: http://scholars.ntou.edu.tw/handle/123456789/18662
DOI: 10.3390/app10196849
Appears in Collections:河海工程學系

Show full item record

Page view(s)

109
Last Week
1
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback