Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/19009
標題: DeepFlu: a deep learning approach for forecasting symptomatic influenza A infection based on pre-exposure gene expression
作者: Zan, Anna
Xie, Zhong-Ru
Hsu, Yi-Chen
Chen, Yu-Hao
Lin, Tsung-Hsien
Chang, Yong-Shan
Chang, Kuan Y. 
關鍵字: SEASONAL INFLUENZA;IMMUNITY;Deep Learning;Influenza Prevention;Influenza Susceptibility
公開日期: 一月-2022
出版社: ELSEVIER IRELAND LTD
卷: 213
來源出版物: COMPUT METH PROG BIO
摘要: 
Background and Objective: Not everyone gets sick after an exposure to influenza A viruses (IAV). Al-though KLRD1 has been identified as a potential biomarker for influenza susceptibility, it remains un-clear whether forecasting symptomatic flu infection based on pre-exposure host gene expression might be possible. Method: To examine this hypothesis, we developed DeepFlu using the state-of-the-art deep learning ap-proach on the human gene expression data infected with IAV subtype H1N1 or H3N2 viruses to forecast who would catch the flu prior to an exposure to IAV. Results: The results indicated that such forecast is possible and, in other words, gene expression could reflect the strength of host immunity. In the leave-one-person-out cross-validation, DeepFlu based on deep neural network outperformed the models using convolutional neural network, random forest, or support vector machine, achieving 70.0% accuracy, 0.787 AUROC, and 0.758 AUPR for H1N1 and 73.8% accuracy, 0.847 AUROC, and 0.901 AUPR for H3N2. In the external validation, DeepFlu also reached 71.4% accuracy, 0.700 AUROC, and 0.723 AUPR for H1N1 and 73.5% accuracy, 0.732 AUROC, and 0.749 AUPR for H3N2, surpassing the KLRD1 biomarker. In addition, DeepFlu which was trained only by pre-exposure data worked the best than by other time spans and mixed training data of H1N1 and H3N2 did not necessarily enhance prediction. DeepFlu is available at https://github.com/ntou-compbio/DeepFlu . Conclusions: DeepFlu is a prognostic tool that can moderately recognize individuals susceptible to the flu and may help prevent the spread of IAV.
URI: http://scholars.ntou.edu.tw/handle/123456789/19009
ISSN: 0169-2607
DOI: 10.1016/j.cmpb.2021.106495
顯示於:03 GOOD HEALTH AND WELL-BEING
資訊工程學系
14 LIFE BELOW WATER

顯示文件完整紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋