Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19150
Title: Retinoblastoma Protein (pRB) Was Significantly Phosphorylated through a Ras-to-MAPK Pathway in Mutant K-ras Stably Transfected Human Adrenocortical Cells
Authors: Y-F Chen
H-H Chiu
C-H Wu
J-Y Wang
F-M Chen
Wen-Shyong Tzou 
S-J Shin
S-R Lin
Keywords: Retinoblastoma protein
Issue Date: 6-Jul-2003
Publisher: DNA Cell Biology
Journal Volume: 22
Journal Issue: 10
Start page/Pages: 657-658
Abstract: 
Our previous studies have shown that the cell proliferation rate, mRNA levels of p450scc, p450c17, and 3βHSD, and secretion of cortisol were significantly increased in human adrenocortical cells stably transfected with mutated K-ras expression plasmid "pK568MRSV" after being inducted with IPTG. In addition, the increased level was a time-dependent manner. However, the levels of p450, p450scc, p450c17, 3 β HSD, cortisol, and cell proliferation rate were inhibited by a MEK phospholation inhibitor, PD098059. The above results prove that mutated K-ras oncogene is able to regulate tumorigenesis and steroidogenesis through a Ras-RAF-MEK-MAPK signal transduction pathway. The aim of this study was to investigate regulated factors in this pathway and also examine whether the other signal transduction pathways or other moles involved in tumorigenesis or steroidogenesis. In the first year, we analyzed gene profiles of mutant K-ras-transfected adrenocortical cells by DNA microarray to determine the gene expression related to cell cycle, signal transduction, apoptosis, tumorigenesis, steroidogenesis, and other expressed sequence tag. After being affected by the K-ras mutant, gene expression was significantly increased in some upregulated genes. Human zinc-finger protein 22 increased by 28.5 times, Osteopontin increased by 5.8 times, LIM domain Kinase 2 (LIMK2) increased by 3.3 times, Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated Kinase 2 (DYRK2) increased by 2.2 times, and human syntaxin 3 increased by two times. On the other hand, significant decreases in gene expression were also observed in some downregulated genes. Retinoblastoma binding protein 1 (RBBP1) decreased by four times, Homo sapiens craniofacial development protein 1 (CFDP1) decreased by 2.4 times, DAP Kinase-related apoptosis-inducing protein Kinase 1 (DRAK1) decreased by 2.3 times, SKI-interacting protein (SKIP) decreased by 2.2 times, and human poly(A)-Binding protein (PABP) decreased by 2.1 times. In all significant differentially expressed genes, preliminary analysis by bioinformatics revealed that after induced K-ras mutant expression by isopropyl thiogalctoside (IPTG), the downregulation of RBBP1 gene was most correlated to cell proliferation. RBBP1 can bind with RB/E2F to form a mSIN3-HDAC complex, which induces cell cycle arrest in the G1/G0 stage by repressing transcription of E2F-regulated genes. The result of a Northern blot showed that RBBP1 were inhibited after an induction of IPTG for 36 h. Another Northern blot analysis proved that mRNA levels of cyclin D1 and c-myc increased in proportion to K-ras expression. Finally, Western blot was carried out, and the results showed that phosphorylated pRB also increased. Taken together, we infer that the mutant K-ras oncogene promoted the cells to proceed to the G1/S stage by the inhibiting the formation of RB/RBBP1-dependent repressor complex from binding with the SIN3-HDAC complex, which resulted in the acetylation of histone to active transcription of E2F-regulated genes. However, the roles of the other differentially expressed genes involved in cell proliferation, cell morphologic change, tumorigenesis, or steroidogenesis still need further investigation.
URI: http://scholars.ntou.edu.tw/handle/123456789/19150
DOI: 10.1089/104454903770238139
Appears in Collections:生命科學暨生物科技學系

Show full item record

Page view(s)

135
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback