Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19460
DC FieldValueLanguage
dc.contributor.authorShuh-Ji Kaoen_US
dc.contributor.authorJin-Yu Terence Yangen_US
dc.contributor.authorKon-Kee Liuen_US
dc.contributor.authorMinhan Daien_US
dc.contributor.authorWen-Chen Chouen_US
dc.contributor.authorHui-Ling Linen_US
dc.contributor.authorHaojia Renen_US
dc.date.accessioned2021-12-29T01:05:30Z-
dc.date.available2021-12-29T01:05:30Z-
dc.date.issued2012-06-14-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19460-
dc.description.abstractParticulate nitrogen (PN) dynamics in the oligotrophic northern South China Sea (around the SouthEast Asian Time-series Study (SEATS) station) was explored by examining the isotopic compositions of suspended PN in the top 200 m over 3 years and sinking PN collected by sediment traps. The PN inventory (IPN) in the upper 100 m is larger than in the lower 100 m, exhibiting stronger seasonality. Both layers reveal significant seasonality in meanδ15NPN, yet, the mean in the upper 100 m (2.0 to 5.3‰) is consistently smaller than that in the lower 100 m, implying the occurrence of vertical biological fractionation and/or an addition of 15N-depleted N from the atmosphere. Theδ15NPN surges in winter, when the mixed layer is deeper, indicate an intensified nitrate supply from thermocline, during which relatively stronger downward transfer efficiency was inferred by a small IPN gradient. The largest vertical gradient in IPN appeared during intermonsoon periods, corresponding with weak vertical mixing, low δ15NPN, and high N* values. N fixation is likely the cause for the intermonsoon δ15NPN lows. The δ15NPNvalues of trapped material at 374 m and 447 m range from 3.3 to 7.3‰ with a flux-weighted mean of 5.6‰ resembling theδ15NO3of upwelled sources. By using a mass-isotope balance model under the assumption of no atmospheric N deposition, we obtained an N fixation input of ∼20 ± 26 mmol N m−2 yr−1. This value accounts for only ∼5–10% of the new production on an annual basis.en_US
dc.language.isoenen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.ispartofGlobal Biogeochemical Cyclesen_US
dc.titleIsotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Seaen_US
dc.typejournal articleen_US
dc.identifier.doi10.1029/2011GB004091-
dc.relation.journalvolume26en_US
dc.relation.journalissue2en_US
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptInstitute of Marine Environment and Ecology-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
Appears in Collections:海洋環境與生態研究所
Show simple item record

Page view(s)

134
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback