Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19541
DC FieldValueLanguage
dc.contributor.authorChih-Chiang Weien_US
dc.date.accessioned2022-01-03T02:20:15Z-
dc.date.available2022-01-03T02:20:15Z-
dc.date.issued2021-11-
dc.identifier.issn2077-1312-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19541-
dc.description.abstractNearshore wave forecasting is susceptible to changes in regional wind fields and environments. However, surface wind field changes are difficult to determine due to the lack of in situ observational data. Therefore, accurate wind and coastal wave forecasts during typhoon periods are necessary. The purpose of this study is to develop artificial intelligence (AI)-based techniques for forecasting wind-wave processes near coastal areas during typhoons. The proposed integrated models employ combined a numerical weather prediction (NWP) model and AI techniques, namely numerical (NUM)-AI-based wind-wave prediction models. This hybrid model comprising VGGNNet and High-Resolution Network (HRNet) was integrated with recurrent-based gated recurrent unit (GRU). Termed mVHR_GRU, this model was constructed using a convolutional layer for extracting features from spatial images with high-to-low resolution and a recurrent GRU model for time series prediction. To investigate the potential of mVHR_GRU for wind-wave prediction, VGGNet, HRNet, and Two-Step Wind-Wave Prediction (TSWP) were selected as benchmark models. The coastal waters in northeast Taiwan were the study area. The length of the forecast horizon was from 1 to 6 h. The mVHR_GRU model outperformed the HR_GRU, VGGNet, and TSWP models according to the error indicators. The coefficient of mVHR_GRU efficiency improved by 13% to 18% and by 13% to 15% at the Longdong and Guishandao buoys, respectively. In addition, in a comparison of the NUM-AI-based model and a numerical model simulating waves nearshore (SWAN), the SWAN model generated greater errors than the NUM-AI-based model. The results of the NUM-AI-based wind-wave prediction model were in favorable accordance with the observed results, indicating the feasibility of the established model in processing spatial data.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofArtificial Intelligence in Marine Science and Engineeringen_US
dc.subjectwave heighten_US
dc.subjectwind fielden_US
dc.subjectconvolution operationen_US
dc.subjectrecurrent operationen_US
dc.subjectfeature extractionen_US
dc.subjecttyphoonen_US
dc.titleWind Features Extracted from Weather Simulations for Wind-Wave Prediction Using High-Resolution Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/jmse9111257-
dc.relation.journalvolume9en_US
dc.relation.journalissue11en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptDepartment of Marine Environmental Informatics-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.orcid0000-0002-2965-7538-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋環境資訊系
14 LIFE BELOW WATER
Show simple item record

Page view(s)

304
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback