Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19880
Title: Effect of Austenite Instability on the Hydrogen-enhanced Crack Growth of Austenitic Stainless Steels
Authors: L.W. Tsay 
S.C. Yu
R.-T. Huang
Keywords: A. Austenitic stainless steel;C. Hydrogen embrittlement;C. Fatigue crack growth
Issue Date: Jul-2007
Journal Volume: 49
Journal Issue: 7
Start page/Pages: 2973-2984
Abstract: 
Fatigue crack growth tests were performed to assess the fatigue behavior of AISI 316L and 254 SMO stainless steels (SSs) in air and gaseous hydrogen. 254 SMO SS generally exhibited a greater resistance to fatigue crack growth than 316L. Sensitization treatment had only a marginal effect on the fatigue crack growth behavior of both alloys in air. Moreover, 316L SS exhibited significant hydrogen-enhanced crack growth but 254 SMO, even sensitized 254 SMO specimens, did not. A thin layer of strain-induced martensite was formed on the fatigue-fractured surface of the 316L SS, and its content increased when raising the stress ratio. The thin martensite layer was responsible for the hydrogen-enhanced fatigue crack growth of the 316L SS. By contrast, the extremely stable austenite was responsible for the low susceptibility of 254 SMO SS to hydrogen-accelerated crack growth. The trapping of hydrogen at the grain boundaries and the transformed martensite in the sensitized 316L specimens led to increased fatigue crack growth rates and intergranular fracture of the material.
URI: http://scholars.ntou.edu.tw/handle/123456789/19880
DOI: 10.1016/j.corsci.2007.01.008
Appears in Collections:光電與材料科技學系

Show full item record

WEB OF SCIENCETM
Citations

32
checked on Jun 1, 2022

Page view(s)

117
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback