Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋工程科技中心
  3. 海洋工程科技中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20196
標題: Accurate Storm Surge Prediction with a Parametric Cyclone and Neural Network Hybrid Model
作者: Chao, Wei-Ting
Young, Chih-Chieh 
關鍵字: storm surge;lead-time;parametric cyclone model;artificial neural network;hybrid approach;network dimensions
公開日期: 1-一月-2022
出版社: MDPI
卷: 14
期: 1
來源出版物: WATER
摘要: 
Storm surges are one of the most devastating coastal disasters. Numerous efforts have continuously been made to achieve better prediction of storm surge variation. In this paper, we propose a parametric cyclone and neural network hybrid model for accurate, long lead-time storm surge prediction. The model was applied to the northeastern coastal region of Taiwan, i.e., Longdong station. A total of 14 historical typhoon events were used for model training and validation, and the results and questions associated with this hybrid approach carefully discussed. Overall, the proposed method reduced the complexity of network structure while retaining the important typhoon indicators. In particular, local pressure and winds estimated from the storm parameters through physically-based parametric cyclone models allow for inferring the possible future influence of a typhoon, unlike the simple collection and direct usage of observation data from local stations in earlier works. Meanwhile, the error-tolerance capability of the neural network alleviated some discrepancy in the model inputs and enabled good surge prediction. Further, the proposed method showed better and faster convergence thanks to the retention of storm information and the reduced dimensions of the search space. The hybrid model presented excellent performance or maintained reasonable capability for short lead-time and long lead-time storm surge prediction. Compared with the pure neural network model under the same network dimensions, the present model demonstrated great improvement in accuracy as the prediction lead time increased to 8 h, e.g., 33-40% (13-21%) and 32-37% (18-29%) RMSE and CE, respectively, in the training/validation phase.
URI: http://scholars.ntou.edu.tw/handle/123456789/20196
DOI: 10.3390/w14010096
顯示於:海洋工程科技中心
海洋環境資訊系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

224
上周
1
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋