Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 13 CLIMATE ACTION
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20661
標題: Short-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networks
作者: Asanjan, Ata Akbari
Yang, Tiantian
Hsu, Kuolin
Sorooshian, Soroosh
Lin, Junqiang
Peng, Qidong
關鍵字: PREDICTION;RAINFALL;TIME;CLIMATE;INFORMATION;SIMULATION;FREQUENCY;PRODUCTS;MODELS;RADAR
公開日期: 13-十二月-2018
出版社: AMER GEOPHYSICAL UNION
卷: 123
期: 22
起(迄)頁: 12543-12563
來源出版物: J GEOPHYS RES-ATMOS
摘要: 
Short-term Quantitative Precipitation Forecasting is important for flood forecasting, early flood warning, and natural hazard management. This study proposes a precipitation forecast model by extrapolating Cloud-Top Brightness Temperature (CTBT) using advanced Deep Neural Networks, and applying the forecasted CTBT into an effective rainfall retrieval algorithm to obtain the Short-term Quantitative Precipitation Forecasting (0-6 hr). To achieve such tasks, we propose a Long Short-Term Memory (LSTM) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), respectively. The precipitation forecasts obtained from our proposed framework, (i.e., LSTM combined with PERSIANN) are compared with a Recurrent Neural Network (RNN), Persistency method, and Farneback optical flow each combined with PERSIANN algorithm and the numerical model results from the first version of Rapid Refresh (RAPv1.0) over three regions in the United States, including the states of Oregon, Oklahoma, and Florida. Our experiments indicate better statistics, such as correlation coefficient and root-mean-square error, for the CTBT forecasts from the proposed LSTM compared to the RNN, Persistency, and the Farneback method. The precipitation forecasts from the proposed LSTM and PERSIANN framework has demonstrated better statistics compared to the RAPv1.0 numerical forecasts and PERSIANN estimations from RNN, Persistency, and Farneback projections in terms of Probability of Detection, False Alarm Ratio, Critical Success Index, correlation coefficient, and root-mean-square error, especially in predicting the convective rainfalls. The proposed method shows superior capabilities in short-term forecasting over compared methods, and has the potential to be implemented globally as an alternative short-term forecast product.
URI: http://scholars.ntou.edu.tw/handle/123456789/20661
ISSN: 2169-897X
DOI: 10.1029/2018JD028375
顯示於:13 CLIMATE ACTION

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

83
上周
0
上個月
2
checked on 2023/6/27

Page view(s)

42
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋