Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21045
DC FieldValueLanguage
dc.contributor.authorKao, Jui-Hsiangen_US
dc.contributor.authorLiao, Yi-Fanen_US
dc.date.accessioned2022-03-07T02:16:55Z-
dc.date.available2022-03-07T02:16:55Z-
dc.date.issued2022-01-01-
dc.identifier.issn1526-1492-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21045-
dc.description.abstractThis paper focuses on the ducted propulsion with the accelerating nozzle, and discusses the influence of its fluid acceleration quality on its propulsive performances, including the hull efficiency, the relative rotative efficiency, the effective wake, and the thrust deduction factor. An actual ducted propulsion system is used as an example for computational analysis. The computational conditions are divided into four combinations, which are provided with different propeller pitches, cambers, and duct lengths. The method applied in this study is the Computational Fluid Dynamics (CFD) technology, and the contents of the calculation include the hull's viscous resistance, the wave-making resistance, the propeller performance curve, and the self-propulsion simulation in order to obtain the ship's effective wake, thrust deduction factor, hull efficiency, and relative rotative efficiency. The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation. According to the computational analysis, it is known that increasing the propeller pitch cannot effectively increase the hull efficiency. The duct acceleration quality can be reduced by shortening the duct length; hence, when the effective wake fraction and thrust deduction factor decrease, the hull efficiency is increased. In addition, the pressure inside the duct is relatively low if the acceleration quality of the duct is too high, which is unfavorable for controlling the propeller cavitation. Moreover, if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle, the thrust deduction factor will be too large and lead to a relatively low hull efficiency.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.subjectDucted propellersen_US
dc.subjectaccelerating nozzleen_US
dc.subjecthull efficiencyen_US
dc.subjectrelative rotative efficiencyen_US
dc.subjecteffective wakeen_US
dc.subjectthrust deduction factoren_US
dc.titleDiscussion of the Fluid Acceleration Quality of a Ducted Propulsion System on the Propulsive Performanceen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmes.2022.016212-
dc.identifier.isiWOS:000744160800004-
dc.relation.journalvolume130en_US
dc.relation.journalissue3en_US
dc.relation.pages1325-1348en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:系統工程暨造船學系
Show simple item record

Page view(s)

169
Last Week
3
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback